The Lack of Ultraluminous X-ray Sources (ULXS) in Early-type Galaxies

Jimmy A. Irwin University of Michigan

Collaborators:

Joel Bregman (University of Michigan)

Alex Athey (OCIW)

<u>Ultraluminous X-ray Sources (ULXs)</u>

Discovered in the *Einstein* era (Fabbiano 1989). Have X-ray luminosities of 10^{39} - 10^{41} ergs s⁻¹. NOT located in the nucleus of the host galaxy. Variability studies have shown that most ULXs are composed of some type of accreting compact object.

$$L_{Eddington} = \frac{4\pi c GMm_p}{\sigma_T} = 1.3 \times 10^{38} \frac{M}{M_{Sun}} \text{ ergs s}^{-1}$$

For a 1.4 M_{sun} neutron star, $L_{Eddington} = 1.8 \times 10^{38}$ ergs s⁻¹ For a 15 M_{sun} black hole, $L_{Eddington} = \sim 2 \times 10^{39}$ ergs s⁻¹

How are X-ray luminosities of up to 10⁴¹ ergs s⁻¹ achieved?

Possible Explanations For ULXs

- 1) Intermediate mass black holes (IMBHs):
 - a 50-1000 M_{sun} black hole accreting near its Eddington limit (Colbert & Mushotzky 1999)
 - would represent the "missing link" between stellar mass black holes and supermassive black holes
 - difficult to create a black hole of this mass
- 2) Beamed or anisotropic X-ray emission from a stellar mass black hole:
 - thermal-timescale mass transfer onto a stellar mass black hole (King et al. 2001)
 - requires an intermediate-to-high mass donor star
 - difficult to explain ULXs in old stellar populations

The Chandra Sample and Analysis

27 galaxies observed with the Chandra ACIS-S chip (Es and S0s).

Only galaxies within 35 Mpc were considered so that >10³⁹ ergs s⁻¹ sources contained at least 40 counts to avoid incompleteness.

 $\Gamma = 2.0$ power law model used to convert counts to energy flux.

All X-ray luminosities computed in the 0.3-10 keV energy range.

The position of each $> 10^{39}$ ergs s⁻¹ source was noted (e.g., between 0-1 effective radii, 1-2 effective radii...)

NGC4697 - Chandra ACIS-S

NGC4697 - Chandra ACIS-S

Expected Number of Unrelated Foreground/Background Sources

Use ROSAT HRI Log N vs. Log S_X from Hasinger et al. (1998):

$$N(>S_X) = 110.0 S_X^{-1.94}$$
 $S_X < 2.66 \times 10^{-14} \text{ ergs s}^{-1} \text{ cm}^{-2}$
= 238.1 $S_X^{-2.72}$ $10^{-13} < S_X < 2.66 \times 10^{-14} \text{ ergs s}^{-1} \text{ cm}^{-2}$
= 91.0 $S_X^{-2.3}$ $S_X > 10^{-13} \text{ ergs s}^{-1} \text{ cm}^{-2}$

$$1-2 \times 10^{39} \text{ ergs s}^{-1} > 2 \times 10^{39} \text{ erg s}^{-1}$$
Number of Sources
Expected 66.5 23.2

Expected Number of Unrelated Foreground/Background Sources

Use ROSAT HRI Log N vs. Log S_X from Hasinger et al. (1998):

$$N(>S_X) = 110.0 S_X^{-1.94}$$
 $S_X < 2.66 \times 10^{-14} \text{ ergs s}^{-1} \text{ cm}^{-2}$
= 238.1 $S_X^{-2.72}$ $10^{-13} < S_X < 2.66 \times 10^{-14} \text{ ergs s}^{-1} \text{ cm}^{-2}$
= 91.0 $S_X^{-2.3}$ $S_X > 10^{-13} \text{ ergs s}^{-1} \text{ cm}^{-2}$

$$1-2 \times 10^{39} \text{ ergs s}^{-1} > 2 \times 10^{39} \text{ erg s}^{-1}$$

Number of Sources Expected

66.5

23.2

Number of Sources

Detected

80

29

Radial profile of 1-2 x 10³⁹ ergs s⁻¹ sources, normalized by area.

Radial profile of 1-2 x 10³⁹ ergs s⁻¹ sources, normalized by area.

Radial profile of $> 2 \times 10^{39} \text{ ergs s}^{-1}$ sources, normalized by area.

Colbert and Ptak (2002) ULX Catalog

Colbert and Ptak (2002) found 87 ULX candidates within 15 early-type and 39 late-type galaxies with the ROSAT HRI.

Some overlap with our sample, and in general extended to larger radii than our sample (out to twice the R_{25} contour).

Assumed a $\Gamma = 1.7$ spectral model, and quoted 2-10 keV X-ray luminosities $\longrightarrow L_X(2\text{-}10 \text{ keV}) = 0.5 * L_X(0.3\text{-}10 \text{ keV})$

Lower limit of Colbert & Ptak (2002) catalog:

 L_X (0.3-10 keV) = 2 x 10³⁹ ergs s⁻¹, so we expect their spatial distribution to be consistent with being randomly distributed for ULXs in early-type galaxies.

Spatial Distribution: Early- vs. Late-Type

Colbert & Ptak (2002) ULXs were divided into 4 radial bins:

	$0 - 0.5 R_{25}$	0.5 - $1.0 R_{25}$	1.0-1.5 R_{25}	$1.5 2.0 \ R_{25}$
Random	1	3	5	7
Distribution				

Spatial Distribution: Early- vs. Late-Type

Colbert & Ptak (2002) ULXs were divided into 4 radial bins:

	$0 - 0.5 R_{25}$	$0.5 1.0 \ R_{25}$	1.0-1.5 R_{25}	$1.5 2.0 \ R_{25}$
Random Distribution	1	3	5	7
Galaxies with T-type < -2.0	2	5	11	16

Spatial Distribution: Early- vs. Late-Type

Colbert & Ptak (2002) ULXs were divided into 4 radial bins:

	$0 - 0.5 R_{25}$	$0.5 \text{-} 1.0 \ R_{25}$	1.0-1.5 R_{25}	1.5 - $2.0 R_{25}$
Random Distribution	1	3	5	7
Galaxies with T-type < -2.0	2	5	11	16
Galaxies with T-type > -2.0	22	17	7	6

Two ULXs in Globular Clusters of NGC1399

Two $L_X > 2 \times 10^{39}$ ergs s⁻¹ sources were found within globular clusters of NGC1399 (Angelini et al. 2001).

Source 1:
$$L_X = 2.3 \times 10^{39} \text{ ergs s}^{-1} \text{ (for } d = 20 \text{ Mpc)}$$

Source 2:
$$L_X = 4.7 \times 10^{39} \text{ ergs s}^{-1}$$

Explanations:

- 1) Globular cluster is a miss-identified background AGN.
- 2) Globular clusters are capable of hosting ULXs (although very rarely).

Propose a "Standard" Definition for a ULX

Various studies have defined ULXs differently, using different luminosity thresholds and different energy bands.

X-ray sources that have X-ray luminosities of 1-2 x 10^{39} ergs s⁻¹ aren't really "ultraluminous", as they can be adequately explained by accretion onto a $\sim 10-20~M_{sun}$ black hole.

2 x 10³⁹ ergs s⁻¹ seems to provide a good break between ULXs and normal X-ray binaries:

- more exotic explanation required (IMBH or beaming)
- more luminous sources lacking in old stellar populations

 \longrightarrow A ULX has $L_X(0.3-10 \text{ keV}) > 2 \times 10^{39} \text{ ergs s}^{-1}$

<u>Summary</u>

- 1) A sample of 27 galaxies observed with Chandra has revealed that X-ray sources more luminous than 2 x 10³⁹ ergs s⁻¹ are absent from early-type galaxies, or at least very rare.
- 2) Both the number and spatial distribution of X-ray sources with X-ray fluxes corresponding to luminosities $> 2 \times 10^{39}$ ergs s⁻¹ are consistent with what is expected from a random distribution (not the case for spiral galaxies).
- 3) Propose that ULXs be defined as non-nuclear X-ray sources having $L_X(0.3\text{-}10 \text{ keV}) > 2 \times 10^{39} \text{ ergs s}^{-1}$.